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SUMMARY

A methodology to prescribe integral boundary conditions is proposed. The approach makes use of
the decomposition of the solution into waves. It applies to any numerical method solving hyperbolic
equations, including the compressible Navier–Stokes equations or their incompressible counterpart when
solved through an arti�cial compressibility method. For any physical quantity to be imposed (e.g. the
mass �ow rate entering the computational domain), the boundary treatment consists in imposing a 1D
incoming ‘acoustic’ wave proportional to the di�erence between the mean quantity of interest (e.g. the
mean mass �ow rate) over the boundary and its prescribed target value. The approach is validated by
computing both steady and pulsated channel �ows for Womersley number upto 15. Results from a 3D
simulation of the blood �ow within a human aortic arch are brie�y discussed. Copyright ? 2002 John
Wiley & Sons, Ltd.
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1. INTRODUCTION AND MOTIVATION

Vascular diseases such as atherosclerosis and aneurysms are becoming frequent disorders in
the industrialized world due to sedentary way of life and rich food. Causing more deaths than
cancer, cardiovascular diseases are the leading cause of death in the western world. In recent
years, encouraging advances in diagnostics have been made thanks to progress in medical
imaging, including the following modalities: computed tomography (CT), magnetic resonance
(MRI), ultrasound (US). However, the current exploitation of these new powerful imaging
modalities remains mostly qualitative. An improved quantitative knowledge and understanding
of the hemodynamic conditions in the treated region would be helpful to address and to solve
certain basic problems related to therapy techniques (e.g. the re-stenosis in arteries treated by
angioplasty). Measuring detailed blood �ow features in vivo is obviously very challenging,
although some recent progress in Doppler analysis have been performed.
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In recent years, computational �uid dynamics (CFD) techniques have been used increasingly
by researchers seeking to understand vascular hemodynamics. Most of the CFD-based hemo-
dynamic studies so far have been conducted to represent in vitro conditions within restrictive
assumptions. Perktold et al. [1] used a �nite element based method to compute the pulsatile
�ow of a Newtonian �uid in a model of a carotid artery bifurcation. This work gave access
to a detailed representation of the velocity, pressure and wall shear stress �elds within the
rigid walled approximation and the e�ect of the bifurcation angle on hemodynamic conditions
was examined as well (see Reference [2] for the application of CFD methods to the design
of end-to-side anastomoses). In an investigation of the e�ect of wall compliance on pulsatile
�ow in the carotid artery bifurcation, Perktold and Rappitsch [3] describe a weakly coupled
�uid–structure interaction �nite element method for solving �uid �ows and vessel mechanics.
The �uid–structure interaction problem was also investigated from a more mathematical point
of view by Formaggia et al. [4] and in a 2D end-to-side anastomosis by Steinman et al. [5].
Rappitsch and Perktold [6] describe the transport of albumin in a model of a stenosis while
Kunov et al. [7] propose a methodology to compute particle residence time in vessels. These
studies under in vitro conditions are well suited to investigate basic phenomena related to �uid
dynamics in vessels models but are not fully representative of actual patient hemodynamic
conditions.
CFD methods possess also the potential to augment the data obtained from in vivo methods

by providing a complete characterization of hemodynamic conditions (blood velocity and
pressure as a function of space and time) under precisely controlled conditions. Milner et al.
[8] used MRI data of two normal subjects to provide the boundary conditions (i.e. geometry
and �ow rates) for a CFD simulation of the blood �ow patterns. This study showed that
conventional ‘averaged’ carotid bifurcation models mask interesting hemodynamic features
observed in realistic models derived from non invasive imaging of normal human subjects.
Moreover, observation of inter-subject variations in the in vivo wall shear stress patterns
supports the notion that more conclusive evidence regarding the role of hemodynamics in
vascular disease may be derived from such individual studies.
Speci�c di�culties in CFD studies of blood �ows are related to the boundary conditions.

First of all, it is now recognized that the blood �ow in a given district may depend on the
global dynamics of the whole circulation. Consequently, it is sometimes necessary to couple
the 3D blood �ow solver to a low order model for the entire vascular system [9]. A second
di�culty is related to the limitations of the existing in vivo anemometry techniques. Indeed,
the space resolution is far too coarse to tackle even the largest scales of the blood �ow details.
As a consequence, the boundary conditions (e.g. the instantaneous velocity pro�le at the inlet
section of the computed domain) are unknown for an in vivo blood �ow computation. Most of
the times, one assumes some analytical space–time evolution for prescribing the inlet pro�le.
Taylor et al. [10] propose to assume very long circular vessel geometry upstream the inlet
section so that the analytical solution of Womersley [11] can be prescribed. However, it is
not always justi�ed to assume a circular cross-section. An alternative approach based on a
characteristic boundary treatment is proposed in this paper.
The characteristic method for prescribing boundary conditions is recalled in Section 2.1 and

the modi�cation proposed is detailed in Section 2.2. A simple validation test case is discussed
in Section 2.3. Finally, we have used CT images of a pathological aortic arch together with
Doppler velocity measurements to compute the blood �ow in pulsatile conditions (Section 3).
Concluding remarks are given in Section 4.
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2. BOUNDARY CONDITIONS

The characteristic Mach number in blood �ows is obviously close to zero and for this study
it would be more e�cient to solve the incompressible Navier–Stokes equations. However, a
compressible 3D solver [12] has been used for two reasons: (1) using a compressible �ow
solver allows us to propose a boundary treatment usable for applications where compressibility
plays a major role (e.g. thermo-acoustic instabilities) and where the lack of accurate spatially
resolved data (as discussed above) is also an issue; (2) certain e�cient numerical techniques
(e.g. arti�cial compressibility) to solve the incompressible Navier–Stokes equations lead to an
hyperbolic problem. Thus they share a common mathematical behavior with the compressible
equations; noticeably they allow the use of characteristic based boundary conditions.

2.1. Characteristic treatment

Characteristic treatment of boundary conditions for the Euler equations relies on determining
the strength of the waves entering the computational domain as a function of the strength of
the outgoing waves and the physical boundary conditions.
The 2D Euler equations may be expressed in quasi-linear form as
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Here V=(�; u; v; P)T is the vector of primitive variables and each of the Jacobian matrices
A and B has its own complete set of real eigenvalues and right and left-eigenvectors. The
matrix En de�ned as Anx +Bny can be introduced, where ñ is chosen as the outward normal
to the boundary under consideration. By diagonalizing En the eigenvalue matrix
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is obtained where un= ũ: ñ and c is the speed of sound. The matrices Ln (L−1
n ) with left

(right) eigenvectors as rows (columns) relate variations in the characteristic variables Wn to
variations in the primitive vector V through the relations

�Wn=Ln�V; �V=L−1
n �Wn (3)

Applying an explicit Euler time discretization to Equation (1), the update of primitive
variables can be written as

�V=Vn+1 −Vn=−�tR=−�t
[
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@V
@x
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]
(4)

For a given boundary with normal ñ, the full residual R of Equation (4) can be split into
a normal component Rn (involving only normal derivatives) and a tangential component Rs
(involving only derivatives along s̃, where s̃ forms an orthonormal basis (̃n; s̃) with ñ). Let us
de�ne Vn as the boundary value at time level n, and �VP the predicted boundary update from
the interior scheme, prior to application of the boundary condition. Although it is not the only
possible choice [13], we will assume in the remainder of this paper that the boundary condition
is applied to the normal update i.e. �VPn =−�tRn. It follows that �VU=�VP − �VPn (which
would also contain the viscous terms if the Navier–Stokes equations are considered) is not
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a�ected by the boundary condition. Consistently, the amplitude of the characteristic waves will
be calculated as Ai=�i@W i

n =@n (no summation). Typically, the characteristic based boundary
treatment is applied as follows:

1. From Equation (3), decompose �VPn , into characteristic variations �W in;P
n and �W out

n due
to in-going and outgoing waves, with corresponding primitive variations �Vin;Pn and �Voutn .

2. Modify the amplitude of the incoming wave(s) �W in;P
n according to the physical re-

quirements at the boundary. This produces the corrected amplitudes, �W in;C
n . Retain the

outgoing waves �W out
n or �Voutn as they are.

3. Combine the waves �W in;C
n and �W out

n , and using L−1
n , Equation (3), transform back to

primitive variables. This gives �VCn . The boundary point is then updated as

Vn+1=Vn + �VU + �VCn =V
n + �VU + �Vin;C + �Vout

2.2. Approximate boundary conditions

The classical characteristic formulation is widely used since it provides a theoretical basis to
derive proper boundary condition treatments, following steps 1 and 3 above. For example, in
the case of a given inlet velocity pro�le imposed, say un=uref , it results from the formalism
in Section 2.1 that the in-going acoustic wave is related to the outgoing one as follows [14]:

A4=A3 + 2
duref
dt

(5)

It follows that the boundary condition is fully re�ecting acoustically: any physical or numer-
ical perturbation generated during the calculation cannot leave the computational domain. To
ensure the stability of the simulation, one often makes use of dissipative schemes in order
to damp the perturbations that cannot be evacuated through the boundaries. However, using
dissipative numerical schemes for calculating unsteady �ows, e.g. the blood �ow in arter-
ies, may lead to erroneous results [15]. Experience proves that it may be su�cient, and safer
numerically, to prescribe the normal velocity approximately by imposing the in-going wave as

A4=Ku(un − uref ) (6)

where Ku is a relaxation coe�cient. This is similar to what proposed Rudy and Strikwerda
[16] to overcome the lack of pressure reference when fully non-re�ecting outlet conditions
are used. They showed that the relaxation coe�cient is related to the characteristic size of the
domain and the characteristic Mach number. Condition (6) is virtually non-re�ecting if un is
close to uref but prevents un from being too di�erent from the reference. Note that, contrary
to the full re�ecting formulation (5), Equation (6) does not guaranty that un is strictly equal
to uref . Note however that the reference velocity is not known precisely in practical blood
�ow simulations. Both formulations (5) and (6) require the knowledge of uref pointwise at the
boundary. However, this information is never available due to in vivo anemometry limitations;
the access to the bulk velocity uref ;bulk is easier. The simple approximate integral condition
that we propose then becomes, integrating the RHS of Equation (6) over the boundary B:

A4=Ku

(
1
SB

∫
B
un dSB − uref ;bulk

)
(7)
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where SB is the area of B. In this formulation, the incoming acoustic wave depends only
on time and drives the total �ow rate entering the domain through B. The shape of the
velocity pro�le comes out from the terms not modi�ed by the boundary treatment, i.e. �VU

in Section 2.1. Note that the integral term in (7) is assessed at each iteration of the simulation
and the input uref ;bulk is a function of time only. Similar relation can easily be provided in
order to control the bulk velocity at a subsonic outlet boundary.

2.3. Pulsatile Poiseuille �ow

In order to validate this approximate integral boundary condition, an unsteady Poiseuille �ow
computation has been carried out. The averaged bulk Reynolds number is Reh=870 with h
half the channel cross-section. The length of the straight channel is 40h. The unsteady �ow
is pulsated at frequencies de�ned by the Womersley number Wo=h

√
!=�=15 (this value is

characteristic for blood �ows in large arteries) with ! the pulsation of the �ow rate variation.
The maximal amplitude is 45% of the mean �ow rate. At the channel inlet the integral values
of both the �ow rate and the temperature are imposed, while at the outlet only the integral
value of the �ow rate is imposed.
Figure 1 shows the velocity pro�les at the inlet at outlet sections at three di�erent instances.

The velocities are scaled by the mean �ow velocity 〈Ubulk〉. The CFD results are compared to
the analytical solution [11] obtained by assuming no dependence in the streamwise direction
in a channel submitted to a pressure gradient of the form ∇P=∇P0 +∇P1 exp(j!t), that is

u(y; t)=−∇P0
2�
(h2 − y2) +R

[
j
∇P1
�!

(
1− cos(�y=h)

cos(�)

)]

Figure 1. Velocity pro�les for steady (left column) and unsteady (right column) Poiseuille �ow, at
inlet (top row) and outlet (bottom row). Lines indicate CFD calculations, symbols correspond to the

analytical solution. Three di�erent phases (0, 70 and 180◦) are shown for the case Wo=15.
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Figure 2. Contours obtained from the segmentation process (left) and surface grid of aorta (right).

where y is the normal co-ordinate, � is the dynamic viscosity, � is the �uid density, �=�=�
and �=Wo exp(3j�=4) is proportional to the Womersley number.
Figure 2 reveals a good agreement along the cross-section. It appears that the application

of sucking outlet conditions is simpler to realize than imposing ‘blowing’ inlet conditions.
This is because the time scale of the di�usion terms in the normal (to the wall) direction is
larger than the time scale of the unsteadiness (the Womersley number is a measure of the
ratio between these two characteristic times). For smaller values of Wo, this is no longer the
case and the results at the inlet improve. In the limit Wo→0, the integral boundary treatment
allows to recover exactly the parabolic (Poiseuille) pro�le.

3. BIO-MEDICAL FLOW SIMULATIONS

From a set of CT images of a human thorax, a level set method (e.g. Reference [17]) has been
used plane by plane in order to identify and digitalize the position of the aorta lining. The
output of this segmentation process is a stack of contours as shown in the LHS of Figure 2.
We then make use of a commercial CFD mesh generator [18] in order to reconstruct the
full arterial morphology through a triangular surface mesh discretization (RHS of Figure 2).
Finally, a three-dimensional volume grid based on tetrahedra is generated with approximately
12 000 grid points and 60 000 elements.
A �ow simulation was conducted over a time-span of several cardiac cycles. The �ow �eld

is initialized through �ow at rest. At the inlet of the simulated domain (which corresponds
to the outlet of the heart) pulsating inlet conditions were imposed, that correspond to the
velocity data provided from Doppler anemometry. The inlet mass �ow rate per cycle is
approximately 5 l=min with the time evolution over one cycle shown in Figure 3. At the
three upper outlet sections (corresponding to the brachiocephalic trunk, the common carotid
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Figure 3. Time evolution of the inlet bulk velocity over one cycle.
The area of the inlet section is close to 9 cm2.

artery and the subclavian artery) the �ow rate was prescribed as 15, 10 and 10% of the
total �ow rate respectively (using the integral boundary conditions described above). These
are typical values for the corresponding bulk �ow rates for a normal human subject. The
remaining �ow leaves the simulated domain through the descending outlet section. Here non-
re�ecting out�ow conditions are applied.
A typical snapshot of the velocity normal to the inlet section is shown in the LHS of

Figure 4. Thanks to the integral boundary condition, the shape of the velocity pro�le is
smooth and consistent with the no slip condition on the edge of the cross-section. The pro�le
is not symmetric because of the curvature in the ascending aorta (see Figure 2 right). Such
a shape could not be reproduced by coupling the CFD solver with a low-order model or
by prescribing the analytical solution of Womersley [11] (assuming very long circular vessel
geometry upstream the inlet section). Note, however that, although plausible, the behaviour
shown in Figure 4 (left) cannot be con�rmed experimentally since no measurements are
available. The visualization of the velocity vectors (RHS of Figure 4) indicates the emergence
of an important recirculation zone in the upper section of the downstream section which is
related to the aneurysm. Further investigations have shown that the particle residence time is
increased by as much as 3 times because of this arterial disease and that the wall shear stress
keeps a small value in the aneurysm area even during the systolic peak.

4. CONCLUDING REMARKS AND PERSPECTIVES

A new simple methodology to prescribe integral boundary conditions has been presented.
In this approach, which makes use of the decomposition of the solution into waves, the
incoming ‘acoustic’ wave is prescribed as proportional to the di�erence between the mean
quantity of interest (e.g. the mean mass �ow rate) over the boundary and its prescribed target
value. The shape of the pro�le of the quantity prescribed at the boundary results from the
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Figure 4. Iso-lines (increment is 0:025 m=s and the minimum value is zero) of the velocity normal to
the inlet section (left) and velocity vectors indicating a recirculation zone near the aneurysm (right).

Both views correspond to a time slightly after the systolic peak.

equilibrium between the di�erent terms of the Navier–Stokes equations inside the computa-
tional domain. This integral type of boundary condition has been validated by computing the
�ow resulting from steady and unsteady pressure gradient in a channel. The numerical results
are quantitatively in good agreement with the analytical solution for Womersley numbers up
to 15.
From a numerical point of view, the integral approach decouples the ingoing and the outgo-

ing waves and relaxes towards a non-re�ecting condition when the relaxation coe�cient tends
to zero. For non-zero relaxation parameter, it is simple to show that this boundary condition
acts as a low-pass �lter in the sense that the re�exion coe�cient is a decreasing function of
the frequency. As a consequence, the high-frequency spurious perturbations possibly created
within the computational domain are not re�ected by this boundary condition and are �ltered
out. This makes the approximate boundary conditions discussed throughout this paper very
di�erent from the classical characteristic based treatment where the incoming waves are ex-
plicit functions of the outgoing ones. The net e�ect is that less arti�cial viscosity may be
required to stabilize to calculation, a great advantage as far as unsteady CFD is concerned.
As an application, the �ow in a human aortic arch has been computed. The geometry

has been obtained from in vivo CT images and the unsteady bulk mass �ow rate deduced
from Doppler anemometry is used as a boundary condition. The integral boundary treatment
presented in this paper provides a smooth plausible velocity pro�le at the inlet section of
the computational domain. It is, however, di�cult to assess precisely the bene�t of the in-
tegral boundary treatment by considering this particular biomedical con�guration since no
measurements are available. At the moment, the only obvious advantage is that the only input
required for such boundary treatment is a bulk information instead of a spatially resolved
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pro�le. Further, tests including in vitro con�gurations with more experimental details should
be performed in the near future to establish the superiority of the integral approach. From
a modeling point of view, the compliance of the wall as well as the non-Newtonian blood
rheology should be accounted for in order to perform more realistic blood �ow simulations
in arteries.
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